Laticyclic Conjugated Polyenes. Study on Diels-Alder Cycloadditions of a Facially Dissymmetric Maleic Anhydride

Teh-Chang Chou,*,† Tzong-Shing J iang, ${ }^{\ddagger}$ J enn-Tsang Hwang, ${ }^{\dagger}$ Kuan-J iuh Lin, ${ }^{\S}$ and Cheng-Tung Lin ${ }^{\ddagger}$
Department of Chemistry, National Chung Cheng University, Ming Hsiung, Chia Yi 621, Taiwan, Department of Chemistry, Tung Hai University, Taichung 400, Taiwan, and Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan

Received February 17, 1999

Abstract

The tetracyclic ring-fused, facially dissymmetric maleic anhydride $\mathbf{2}$ was synthesized from compound 9 obtained from the Diels-Alder cycloaddition of the bicyclic ring-fused cyclohexadiene $\mathbf{1}$ and acetylenedi carboxylate. Maleic anhydride $\mathbf{2}$ readily underwent the Diels-Alder cycloadditions with anthracene, 1,3 -di phenyli sobenzofuran, cycl opentadiene, 1,3-cyclohexadiene, 6,6-dimethylfulvene, and o-quinodimethane. All the cycloadditions occurred exclusively on the π-face syn to the etheno bridge of 2, thereby in cases of the cycloadditions with anthracene, cyclopentadiene, 1,3cycl ohexadiene, and 6,6-dimethylfulvene producing the corresponding adducts 11a, 18b, 22b, and 23b that contain three double bonds aligned in parallel. The structures of 18b and 22b were unequivocally established by the X-ray structural determinations. The molecular structure of maleic anhydride $\mathbf{2}$ was analyzed by X-ray crystallography to have a pyramidalized dienophilic double bond, which appeared to correlate well with the observed π-facial selectivity.

Introduction

The synthetic endeavor toward the rigid polycyclic molecules of specially designed architecture has been actively demonstrated in the search for new structure systems that may possess specific functions of various interests. For example, rigid and often symmetric molecules are capable of functioning as "spacers" for use as probes to evaluate the intramolecular nonconjugated orbital interactions in terms of through-space and throughbond mechanisms ${ }^{1}$ and electron-transfer phenomenon with regard to the dependence of distance and orientation between donor and acceptor groups. ${ }^{2}$ They are also capable of functioning as "templates" for use as a synthetic tactic to direct specific bond formation. ${ }^{3} \mathrm{Re}-$ cently, intense research activity on supramol ecular chemistry has also attracted much interest in the synthesis of rigid polycyclic spacer molecules for use as complementary components for molecular recognition directed self-assembly to construct supermolecules. ${ }^{4}$ A variety of ring systems have been used as basic building blocks to

[^0]construct the polycyclic spacer molecules. Among them, acene, ${ }^{5}$ 1,4-cycl ohexadiene, ${ }^{6}$ cycl obutane, ${ }^{7}$ norbornane, ${ }^{8}$ and 7 -oxabicyclo[2.2.1]heptane ${ }^{9}$ are most notable examples. Toward the synthesis of these types of polycyclic molecules, the most commonly employed strategy is based on the concept of repetitive Diels-Alder cycloadditions using appropriate bis-dienes and bis-dienophiles.
Our interest in the synthesis of polycyclic molecules containing π-bonds arranged in laticyclic topol ogy ${ }^{10}$ led us to prepare 1,8,9,10-tetrachl orotricydo-11,11-dimethoxy[6.2.1.02,7] undeca-3,5,9-triene (1) for use as a synthon for cis-9,10-dihydronaphthalene. ${ }^{11}$ We utilized triene 1 as a bis-cyclohexadiene to stereoselectively construct polycyclic molecules that hold two syn-concatenated bicyclo[2.2.2]octene units by the method of sequential Diels-Alder cycloadditions. ${ }^{12}$ As we continue to exploit

[^1]the application of tricydic triene $\mathbf{1}$ for the synthesis of bicyclo[2.2.2]octene-based rigid polycyclic spacer molecules, we have undertaken the preparation of 3,4,5,6-tetrachloro-13,13-dimethoxytetracydo[6.2.2.1 ${ }^{3,6} .0^{2,7}$]trideca-4,9,11-triene-9,10-dicarboxylic anhydride (2) from $1 .{ }^{13}$ Anhydride 2 is of synthetic interest not only as a dienophile but also as a cyclic diene component for use in Diels-Alder cycloadditions, because it contains an activated double bond and a masked cyclohexadiene moiety that can be generated by a dechlorination-deacetalization-decarbonylation process. ${ }^{12}$

Maleic anhydride 2 has laticyclic conjugated double bonds and is facially dissymmetric. Initially, we anticipated simply based upon consideration of steric factors that the Diels-Alder cycloadditions would likely proceed via syn-side (relative to the etheno bridges in 2) attack of the cyclic diene upon 2 to produce syn,endo and/or syn, exo cycl oadducts (A and/or B; Scheme 1). ${ }^{14}$ Cycloadducts B, for example, thus formed could subsequently be subjected to the unmasking of cyclohexadiene substructure (protection of anhydride moiety may deem necessary) for further elaboration of linearly syn-concatenated bicyclo[2.2.2]octenes having double bonds arranged for laticyclic conjugation as shown by generic structure \mathbf{C} (Scheme 1). ${ }^{15}$
This anticipation of facial selectivity is contrary to the behavior of bicyclo[2.2.1]heptadienyl (norbornadienyl) systems. It is well documented that Diels-Alder cycloadditions to norbornadienyl systems occur predominately or exclusively upon the face anti to the etheno bridge. ${ }^{16,17}$

[^2]
Scheme 1

and/or

Stille and Frey in 1959 reported the Diels-Alder cycloaddition of cyclopentadiene to norbornadiene and established the major 1:1 adduct to be presumably formed by anti-face attack of cyclopentadiene onto dienophile. ${ }^{17 e}$ Such a mode of addition was observed nearly 10 years later by Edman and Simmon in their study of the DielsAlder cycloadditions of bicyclic dicarboxylic anhydride 3 with various dienes. ${ }^{18}$ Two 1:1 adducts 4 (60-70\%) and 5 (1\%) were isol ated from the cycloaddition of cyclopentadiene with maleic anhydride 3, which were established to result from exclusive anti-face attack of cyclopentadiene onto 3 (eq 1). However, additions of a diene onto

bicyclo[2.2.2]octa-2,5-dienyl systems are known to take place preferentially at the syn face. ${ }^{19}$ Williams et al. investigated the Diels-Alder cycloaddition of cyclopentadiene with bicyclic dicarboxylic anhydride 6 and observed pronounced syn-facial selectivity. ${ }^{19 a, b}$ Only two of the four possible steroisomeric adducts 7 and 8 were formed in a ratio of 5:1 (eq 2).

The distinct preference for attack of a diene on the syn face of bicyclo[2.2.2]octadienyl systems is even reinforced in the Diels-Alder cycloadditions of more elaborated, facially dissymmetric maleic anhydride 2. The cycload-

[^3]Scheme 2

ditions proceeded with the attack of cyclic dienes exclusively upon the activated double bond of $\mathbf{2}$ via the face syn to the etheno bridge, thereby affording cycloadducts having stereostructures \mathbf{A} and/or \mathbf{B} (Scheme 1). ${ }^{13}$ The syn-facial addition is exclusive for all cases investigated in this study! In this paper, we wish to report the results of study in full account, along with comment on the synfacial selectivity based on the X-ray structural analysis of maleic anhydride 2.

Results and Discussion

The preparation of facially dissymmetric maleic anhydride $\mathbf{2}$ as presented in Scheme 2 starts from the readily available tricydic triene $\mathbf{1}^{11}$ following the established procedure with modification. Thus, a solution of triene $\mathbf{1}$ and dimethyl acetylenedicarboxylate in benzene was refluxed for 48 h , thereby furnishing Diels-Alder adduct 9 in 83% yield. The reaction proceeded with the dienophile approaching $\mathbf{1}$ exclusively from the less hindered exo face, as expected by known facts, ${ }^{12}$ to yield the adduct 9. Dehydration of maleic acid 10, obtained from hydrolysis of adduct 9, with oxalyl chloride in refluxing dichloromethane for $15 \mathrm{~h}^{20}$ or by heating with acetic anhydride at $60^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}^{19 \mathrm{a}}$ afforded maleic anhydride $\mathbf{2}$ in nearly 60% overall yield from $1 .{ }^{21}$ The presence of two characteristic absorption bands at 1777 and $1840 \mathrm{~cm}^{-1}$ in the infrared spectrum of $\mathbf{2}$ confirmed the formation of anhydride ring moiety. The structure is further supported by the X-ray structural determination (vide infra).

Diels-Alder Cycloadditions of $\mathbf{2}$ with Endocyclic Dienes. The electronically activated double bond present in maleic anhydride 2 readily undergoes the Diels-Alder cycloadditions with various endocyclic dienes. ${ }^{22}$ The results of Diels-Alder cycloadditions of maleic anhydride 2 with anthracene, 1,3-diphenylisobenzofuran, cyclopentadiene, cyclohexadiene, and 6,6-dimethylfulvene are outlined in Schemes 3-7. To determine the composition of the crude product mixture (number of isomeric adducts and ratio), thin-layer chromatographic and ${ }^{1} \mathrm{H}$ NMR spectral analyses were performed immediately after the workup procedure without further separation and purification. Elemental and mass analyses were used to

[^4]Scheme 3

establish the 1:1 nature of the resulting cycloadducts. All the adducts obtained from the reactions have inherent C_{s} symmetry as evident from their rather simple ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which are consistent with the structural assignments. The stereostructures of the adducts were assigned principally on the basis of ${ }^{1} \mathrm{H}$ NMR spectral analyses ${ }^{23}$ and by comparison with similar adducts prepared in our laboratory.

Thus, the Diels-Alder cycloaddition of $\mathbf{2}$ with anthracene (3 equiv) in refluxing xylene for 2 days afforded only one of two possible 1:1 adducts (i.e., syn adduct 11a and anti adduct 11b, Scheme 3) in 70% yield after recrystallization from CHCl_{3}. The ${ }^{1} \mathrm{H}$ NMR spectrum of this adduct exhibits a signal (pseudo-dd, part of an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ system) centered at $\delta 4.98$ ascribed to the vinyl hydrogens of the etheno bridge: an upfield shift of 1.03 or 1.14 ppm with respect to that of ether 12 (at $\delta 6.01$) ${ }^{12 a}$ or anhydride 13 (at $\delta 6.12$), ${ }^{12 f}$ respectively. The upfield

shift is attributed to the consequence of a strong anisotropic shielding effect on vinyl hydrogens by the proximal, face-to-face benzene ring and double bond and is best demonstrated by comparison of the vinyl hydrogen absorption signals in bicyclo[2.2.2]octadienes 14, ${ }^{24}$ 15, ${ }^{12,, 24}$ and 16. ${ }^{15 b}$ This observation led us to suggest that the reaction occurred via addition of anthracene to the syn face of $\mathbf{2}$ to form an adduct having the stereostructure 11a, in which the etheno bridge is sandwiched face-toface by a benzene ring and a chlorine-substituted double bond. ${ }^{25}$

The cyd oaddition of 1,3-diphenylisobenzofuran (1 equiv) to maleic anhydride $\mathbf{2}$ was carried out by stirring the reaction mixture in dichloromethane at room temperature for 30 min . Out of four possible stereoisomeric 1:1 adducts (i.e., syn,endo-17a, syn,exo-17b, anti,endo-17c, and anti,exo-17d, Scheme 4), only one adduct was ob-

[^5]Scheme 4

tained in 95\% yield after recrystallization from EtOAc. In the ${ }^{1} \mathrm{H}$ NMR spectrum of this adduct, an absorption signal centered at $\delta 5.67$ (pseudo-dd) due to the ethenobridge hydrogens indicates the absence of a proximal, face-to-face benzene ring. An upfield shift of 0.34 or 0.45 ppm, as compared, respectively, to the signals of the etheno-bridge hydrogens of $\mathbf{1 2}$ (at $\delta 6.01$) or anhydride 13 (at $\delta 6.12$), can only be attributed to the result of a shielding effect on the double bond by the proximal oxygen bridge. ${ }^{26}$ On the basis of this information, the syn,exo isomer 17b was eliminated as the product, which would be expected to show an ${ }^{1} \mathrm{H}$ NMR spectrum having a signal for the etheno-bridge hydrogens at much higher field, similar to that of 11a (at $\delta 4.98$). The ${ }^{1} \mathrm{H}$ NMR spectrum also contains a broad singlet assigned to the tertiary hydrogens at the ring junction at 2.76 , which is nearly same as that in adducts 11a (br s at $\delta 2.78$), 12 (br s at $\delta 2.73$), and 13 (br s at $\delta 2.75$). The small difference in chemical shifts indicates that the two

[^6]Scheme 5

tertiary hydrogens in this adduct are syn to the anhydride moiety as in the adduct 11a, rather than syn to an oxygen atom or benzene ring as in the other adducts (i.e., anti,endo-17c or anti,exo-17d) that would be formed, if addition of 1,3-diphenylisobenzofuran had occurred upon the anti face of $\mathbf{2 . 2 5}$ The stereostructure of this adduct is therefore assigned to have the syn,endo stereochemistry as depicted in 17a (Scheme 4), which results from synside attack of 1,3-diphenylisobenzofuran upon the dienophile $\mathbf{2}$ and endo addition in accordance with the Alder rule. When a solution of maleic anhydride $\mathbf{2}$ in benzene was refluxed in the presence of excess cyclopentadiene (5 equiv) for 12 h , the reaction furnished two isomeric 1:1 cycloadducts in a ratio of 2:1. These two adducts were separated by column chromatography and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} to give adducts 18a and 18b, respectively, in a total of 93% yield (Scheme 5).

The syn,exo structure 18b is assigned to the major product, for among the four possible stereoisomeric adducts ($\mathbf{1 8 a} \mathbf{-} \mathbf{d}$) only $\mathbf{1 8 b}$ displays the ${ }^{1} \mathrm{H}$ NMR spectrum with absorption signals centered at $\delta 5.72$ (pseudo-t) and $\delta 5.52$ (pseudo-dd). The signals are ascribed to respective vinyl hydrogens of two mutually shielded double bonds of bicyclo[2.2.1]heptene and bicyclo[2.2.2]octene substructures in 18b, in which the vinyl hydrogens of central double bond (at $\delta 5.52$) is further shiel ded by the flanking chlorinated double bond. Groups of vinyl hydrogens displaying comparable chemical shifts have been noted in Iaticyclic conjugated trienes $19{ }^{12 a}$ and 20, ${ }^{25}$ thereby supporting our assignment for 18b. ${ }^{27}$ To confirm our structural assignment, an X-ray single-crystal structure of $\mathbf{1 8 b}$ was determined. ${ }^{28}$
On the other hand, in the ${ }^{1} \mathrm{H}$ NMR spectrum of minor product, the corresponding etheno-bridge hydrogens ap-

[^7]
pear at $\delta 6.43$ (pseudo-t) and $\delta 6.13$ (pseudo-dd), the former being comparable to vinyl hydrogens of endo- or exo-bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylic anhydride substructure in $\mathbf{4}^{18}$ and the latter in compound 13. This reveals that all three of the other stereoisomers (18a, 18c, and 18d, Scheme 5) are possible. A diagnostic feature that led us to eliminate isomers 18c/18d and assign stereostructure 18a for this minor adduct is the unusual absorption of an AB pattern ($J=10 \mathrm{~Hz}$) generated by the two hydrogens on the methano bridge.

The ${ }^{1} \mathrm{H}$ NMR spectral assignments in ring systems composed of fused norbornyl fragments are well-documented in the literature. ${ }^{23}$ In norbornene itself, the hydrogens of methano-bridge resonance at $\delta 1.08$ and $1.33(\Delta \delta=0.25 \mathrm{ppm})$, with the hydrogen syn to the double bond being shielded and absorbing at higher field (lower δ). ${ }^{29}$ Extending to the two fused norbornyl systems, the assignments of relative absorption positions of the hydrogens at two environmentally different methano bridges of dechlorinated insecticide aldrin 2129,30 and its derivative 4 are demonstrative for our stereochemical determination of adduct 18a. F or compound 21, a separation of $\Delta \delta=1.55 \mathrm{ppm}$ is observed for the two geminal hydrogens that are on the bridge proximal to the $\Delta^{2,3}$ double bond. Similar behavior is observed for the corresponding protons in 4 with a separation of $\Delta \delta=1.46$ ppm. On the basis of steric compression against the π cloud of the double bond, ${ }^{31}$ the hydrogen directly facing the $\Delta^{2,3}$ double bond in 4 and 21 experiences a very strong deshielding effect and thus displays a large downfield shift to appear at $\delta 3.00$ and 2.55 , respectively. The other pair of bridge hydrogens in 4 and 21 behaves rather normally, comparable to that of norbornene ${ }^{29}$ and anhydride derivatives ${ }^{18}$ (and 18b), with values in the range of less than $\Delta \delta=0.25 \mathrm{ppm}$ for the separation of these two hydrogens. Thus, among three stereoisomeric adducts (18a, 18c, and 18d), only stereostructure 18a can most probably exhibit, by its two hydrogens on the

[^8]
Scheme 6

methano bridge, an absorption of the AB pattern (δ 2.92/ δ 1.41) with a large difference in chemical shfits ($\Delta \delta=1.51$ $\mathrm{ppm})$ and an unusual downfield absorption for one of these two hydrogens. The establishment of the stereostructures of both adducts 18a and $\mathbf{1 8 b}$ suggests that the cycloaddition of cyclopentadiene to maleic anhydride 2 takes place exclusively on the syn face of $\mathbf{2}$.

A comparable result was found for Diels-Alder cycloaddition of 1,3-cycl ohexadiene (1.2 equiv) with maleic anhydride 2, when the reaction mixture in toluene was heated under reflux for 24 h . The reaction produced two 1:1 cycloadducts in about equal amounts, which were separated by column chromatography and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give syn,endo adduct 22a and syn,exo adduct 22b in a total yield of 50\% (Scheme 6). Stereostructural determination of syn,exo adduct 22b is evidently supported by the presence of absorption signals at $\delta 5.72$ (pseudo-dd) and $\delta 5.88$ (pseudo-dd) in its ${ }^{1} \mathrm{H}$ NMR spectrum, which are due to vinyl hydrogens of two parallel aligned, mutually shielded double bonds closely resembling those of 18b. In particular, the differences in chemical shifts are nearly the same (22b, $\Delta \delta=0.16$ ppm vs 18b, $\Delta \delta=0.19 \mathrm{ppm}$), indicating the distances between two etheno bridges in 18b and $\mathbf{2 2 b}$ are about equal. The stereostructure of 22b was unequivocally established by an X-ray structural analysis ${ }^{32}$ that revealed the structural similarity to that of 18b. ${ }^{33}$
The ${ }^{1} \mathrm{H}$ NMR spectrum of second adduct (22a) shows two absorption signals at $\delta 6.35$ and 6.09, indicative of two bicyclo[2.2.2]octene moieties that are differently situated in the molecular framework. The geminal hydrogens on the ethano bridge appear at $\delta 1.38$ and 1.13 with a separation of $\Delta \delta=0.25 \mathrm{ppm}$, comparable to those in bicyclo[2.2.2]octene ($\delta 1.50 / \delta 1.27, \Delta \delta=0.23 \mathrm{ppm}$) and
endo-bicyclo[2.2.2]oct-2-ene-5,6-di carboxylic anhydride (δ $1.62 / \delta 1.43, \Delta \delta=0.19 \mathrm{ppm}) .{ }^{34}$ These spectral data alone cannot clearly discriminate among isomeric adducts 22a, 22c, and 22d. Recourse is thus made to the broad singlet displayed by the tertiary hydrogens at the ring junction, which appears at $\delta 2.82$ and is nearly the same as that of 22b ($\delta 2.87$) and 18a/18b as well. The similarity in chemical shifts implies that the anhydride moiety in this second adduct (22a) is syn to the tertiary hydrogens at the ring junction, like the relative orientation of corresponding moieties in 22b and 18a/18b, rather than in other isomers 22c and 22d. ${ }^{35}$ The assignment of stereostructure 22a is supported by the NOE spectrum in which enhancement of the absorption signal due to the hydrogens of the etheno bridge is observed, when the "inside" hydrogens of the ethano bridge in 22a are irradiated. Again, maleic anhydride $\mathbf{2}$ displayed syn-facial selectivity in the Diels-Alder cycloaddition with cyclohexadiene, thereby affording syn,endo adduct 22a and syn, exo adduct 22b.

The Diels-Alder cycloaddition of maleic anhydride 2 with 6,6-dimethylfulvene (5.5 equiv) in benzene at $40^{\circ} \mathrm{C}$ for 3 days furnished, after separation by chromatography, adducts 23a and 23b in 9\% and 74\% yields, respectively. When the reaction was performed by heating the reaction mixture in toluene under reflux for 24 h , 23a was obtained in 45% yield as sole product (Scheme 7). Apparently, adduct 23b is thermodynamically less stable than 23a. In fact, upon heating a solution of 23b in benzene, retro-Diels-Alder reaction occurred to produce 2, 23a, and 6,6-dimethylfulvene. The ${ }^{1} \mathrm{H}$ NMR spectrum of the adduct 23a exhibits two absorption signals at δ 6.44 (pseudo-t) and $\delta 5.83$ (pseudo-dd) ascribed to the vinyl hydrogens of two etheno bridges. The upfield shift of the vinyl hydrogens on the central etheno bridge (at δ 5.83) is attributed to the shielding by contiguous paralleland perpendicular-oriented double bonds. These absorption signals, together with a broad singlet at $\delta 2.84$ displayed by the tertiary hydrogens at the ring junction, suggest that this adduct possesses stereochemistry like that of 18a and 22a and is formed by the syn,endo addition mode of cycloaddition. An NOE was observed at $\delta 5.83$ for the etheno-bridge hydrogens when the isopropylidene methyl hydrogens (at $\delta 1.42$) were irradiated, further supporting the structural assignment of adduct 23a.

The syn,endo adduct 23b is identified to have three etheno bridges aligned in parallel and in close spatial proximity, just like those in 18b and 22b. This stereostructure is evident from the absorption signals at $\delta 5.83$ (pseudo-t) and $\delta 5.55$ (pseudo-dd) due to the vinyl

[^9]Scheme 7

hydrogens of two etheno bridges and a broad singlet at $\delta 2.86$ ascribed to the tertiary hydrogens at the ring junction.

Diels-Alder Cycloaddition of $\mathbf{2}$ with o-Quinodimethane. As anticipated at the beginning based upon consideration of the ethano bridge being sterically more demanding than the etheno bridge, the exclusive cycloadditions of endocyclic dienes onto the syn face of maleic anhydride $\mathbf{2}$ are realized in all cases (Schemes 3-7). ${ }^{36}$ This consideration led us to undertake the investigation of Diels-Alder cycloadditions of $\mathbf{2}$ with a less sterically demanding exocyclic diene, o-quinodimethane (24), with the expectation of observing any degree of change in the π-facial selectivity of 2.
To this end, maleic anhydride $\mathbf{2}$ was subjected to the Diels-Alder cycloaddition with 24 (2 equiv) generated in situ by pyrolysis of 1,4-dihydro-2,3-benzoxatin ${ }^{37}$ in toluene at $95{ }^{\circ} \mathrm{C}$ for 6 h . The reaction produced only one of the two possible stereoisomeric adducts in 73\% yield (25a/25b or 25c/25d, Scheme 8). The ${ }^{1} \mathrm{H}$ NMR spectrum of this adduct displays a broad singlet at $\delta 2.87$ due to the tertiary hydrogens at the ring junction and an $\mathrm{A}_{2} \mathrm{~B}_{2}$ quartet at $\delta 3.09$ and 2.70 with $\mathrm{J}=14.3 \mathrm{~Hz}$ that are ascribed to two pairs of benzylic hydrogens. Together with the observed NOE enhancement of absorption signal at $\delta 6.27$ upon irradiation of one pair of the benzylic hydrogens (at $\delta 2.70$), this adduct could be assigned the stereostructure 25a or 25b. Structures 25a and 25b are conformational isomers and could be formed by either syn,endo or syn,exo addition of o-quinodimethane onto
(36) To our disappointment, maleic anhydride 2 was unable to undergo the Diels-Alder cycloaddition with diene $\mathbf{1}$ to produce adduct of generic structure \mathbf{C} under conventional, catalytic, or pressurized (up to 4 K bar) conditions.
(37) H oey, M. D.; Dittmer, D. C. J. Org. Chem. 1991, 56, 19471948.

Figure 1. ORTEP drawing of the X-ray structure of $\mathbf{2}$.
Scheme 8

dienophile 2. ${ }^{38}$ The appearance of vinyl hydrogens at δ 6.27 indicates the absence of a benzene ring in close proximity to the etheno bridge, and thus, the adduct adapts itself to the sterically more favored conformation 25a. The syn-facial selectivity of 2 still prevails over the anti-facial selectivity in the Diels-Alder cycloaddition with o-quinodimethane.

Crystal Structure of 2. An ORTEP drawing of a single molecule of anhydride $\mathbf{2}$ is shown in Figure 1. Analysis of the crystal data reveals the molecule to have an approximate mirror symmetry. The overall geometry of the tetrachlorinated bicylo[2.2.1]heptenyl substructure

[^10]

Figure 2. Nonplanarity of the C11-C12 double bond and the dihedral angles between least-squares planes in 2. Projection on the plane containing $\mathrm{C} 13, \mathrm{O} 2, \mathrm{O} 4$, and O 5 .
is, in general, comparable to that in structures 18b and 22b, with elongated C3-C13 (1.577 Å) and C6-C13 (1.573 Å) bonds and a compressed C3-C13-C6 bond angle (90.33°). The distance between C4-C5 and C9C10 double bonds is averaged to be $2.961 \AA \AA$. In the bicyclo[2.2.2]octadienyl ring, the elongations of the bonds between the bridgehead (C1/C8) and ethano-bridge (C2/ C7) carbon atoms (C1-C2, $1.573 \AA$, and C7-C8, 1.567 \AA) are also observed in the present case as in structure 6 (1.580 and $1.578 \AA$). ${ }^{19 b}$ The bicyclo[2.2.2]octadienyl substructure is composed of three equilateral trapezoids, which are formed by the carbon atoms of the C2-C7, C9C10, and C11-C12 bonds with the common bridgehead carbon atoms (C1 and C8). ${ }^{39}$ As illustrated in Figure 2, these three equilateral trapezoids form dihedral angles of $124.3^{\circ}, 122.4^{\circ}$, and 113.3° with each other, such that the boat conformation of the C1-C2-C7-C8-C12-C11 six-membered ring is puckered and the other two are slightly flattened. The five-membered anhydride ring is slightly twisted with the C14-C11-C12-C15 torsional angle of 1.1° and is not coplanar with the C1-C11-C12C8 trapezoid as indicated by the C1-C11-C12-C15 and C8-C12-C11-C14 dihedral angles being -175.7° and 176.6°, respectively. ${ }^{40}$ That the C2-C1-C8-C15 and $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 14$ dihedral angles are -111.2° and 111.5°, which are about 2° smaller than the dihedral angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 12\left(-113.4^{\circ}\right)$ and C7-C8-C1-C11(113.2$)^{\circ}$, respectively, also reflects this noncoplanarity. This difference of 2° in dihedral angles indicates that both the C14 and C15 carbon atoms on the anhydride ring are located out of the C1-C11-C12-C8 plane on the same side as the $\mathrm{C} 2-\mathrm{C} 7$ bridging atoms, with deviations of 0.081 and $0.107 \AA$, respectively. These deviations translate into an inclination of approximately 3.2° and 4.2° for the respective C11-C14 and C12-C15 bonds with the C1-C11-C12-C8 trapezoid plane of the bicyclo[2.2.2]octadienyl system. It is also interesting to note that the dichlorinated double bond in $\mathbf{2}$ is not planar. The C6$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl}(2)$ and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl}(3)$ dihedral angles are -175.0° and 175.3°, respectively.

The rationales for the facial selectivity of the norbornenyl and norbornadienyl systems have been intensively

[^11]deliberated and debated. ${ }^{41}$ The anti-facial selectivity is presumably to be the result of factors such as torsional effects, ${ }^{42}$ greater π electron density, ${ }^{43}$ and disrotatory orbital tilting ${ }^{44}$ that overcome the unfavorable steric effects on the more crowded anti face of the π-system and, hence, dictate the additions of dienes to the anti face of norbornenyl and norbornadienyl systems. Correlation between the π-facial selectivity and the pyramidalization of the double bond in norbornene and norbornadiene has also been noted. ${ }^{45}$

On the contrary, there are fewer explanations for the π-facial stereoselectivity in cycloadditions of bicyclo[2.2.2]octadiene and related species. Steric factors certainly play an important role in determining the course of reactions. However, since differential steric effects are much less significant in bicyclo[2.2.2]octadienes $\mathbf{2}$ and $\mathbf{6}$ (ethano vs etheno bridges) than in norbornadiene (methano vs etheno bridges), the expectation of dominant Diels-Alder anti attack on the bicyclo[2.2.2]octadienyl dienophile is obviously contemplated by analogy with norbornenyl systems. Nevertheless, in the case of the Diels-Alder cycloaddition of cyclopentadiene with dienophile 6 there is a distinct preference for syn addition along with some anti addition products observed (eq 2). Very recently, Williams et al. analyzed the molecular structure of maleic anhydride 6 by both ab initio calculations and X-ray structural determination. ${ }^{19 b}$ With the structural data, they proposed that a combination of the double-bond pyramidalization and minimization of steric interactions is responsible for the π-facial selectivity observed in bicyclo[2.2.2]octadienyl dienophile 6.

In our cases of the Diels-Alder cycloaddtions of maleic anhydride 2 with cyclopentadiene and other various dienes, the face syn to the etheno bridge of 2 is the exclusive face to be attacked by dienes (Schemes 3-8). The observed syn-facial selectivity of maleic anhydride 2 in Diels-Alder cycloadditions seems to be in concord with its crystal structure. The syn-facial selectivity is likely the consequence of a pyramidalized anhydride olefinic bond (ca. 3.6° pyramidalization) and the more severe steric hindrance on the side of the ethano bridge (the anti face of the π system) due to the larger degree of folding of the C1-C2-C7-C8-C12-C11 boat conformation. ${ }^{46}$

Conclusion

The results of the present study demonstrate that the Iaticyclic conjugated, facially dissymmetric maleic anhy-

[^12]dride $\mathbf{2}$ undergoes the Diels-Alder cycloadditions with various dienes exclusively from the π face syn to its etheno bridge. The observed π-facial selectivity is more enforced relative to that of bicyclo[2.2.2]octadienyl dienophile 6 and entirely opposite to that of norbornadienyl systems, such as anhydride 3. The π-facial selectivity seems to agree with the X-ray crystal structure of 2, which reveals pyramidalization (ca. 3.6°) of the anhydride double bond. However, the consequence of Iaticyclic conjugation and hence the presence of a remote double bond in influencing the π-facial selectivity of $\mathbf{2}$ await further evaluation by both experimental work and computational analysis. Nevertheless, the results of the present investigation indicate that maleic anhydride 2 is a potential synthon for the synthesis of linearly synconcatenated bicyclo[2.2.2]octene-based spacer molecules having double bonds arranged for Iaticyclic conjugation as shown by generic structure \mathbf{C} (Scheme 1).

Experimental Section

Melting points were determined on a capillary apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 200,300 , or 400 MHz spectrometer using CDCl_{3} as sol vent (unless otherwise specified). All chemical shifts were expressed in $\delta(\mathrm{ppm})$ with reference to $\mathrm{CDCl}_{3}\left(\delta 7.26\right.$ for ${ }^{1} \mathrm{H}$ NMR and δ 77.0 for ${ }^{13} \mathrm{C}$ NMR). The number of attached hydrogens on the carbon atom was determined by the DEPT analysis. Infrared (IR) spectra were recorded as KBr pellets on an FT-IR spectrophotometer. Mass (MS) spectra were obtained by the El mode unless otherwise indicated. Column chromatography was performed with E. Merck Kieselgel 60 (230-400 mesh). All solvents used were either reagent grade or were distilled prior to use. Microanalyses were performed by the Analytical Center of Cheng-Kung University, Tainan, Taiwan.

Dimethyl ($1 \alpha, 2 \alpha, 3 \beta, 6 \beta, 7 \alpha, 8 \alpha)-3,4,5,6-T e t r a c h l o r o-13,13-$ dimethoxytetra cyclo[6.2.2.13,6.02,7]trideca-4,9,11-triene-9,10-dicarboxylate (9). A solution of triene 1 (15.0 g, 43.8 mmol) and dimethyl acetylenedicarboxylate ($6.2 \mathrm{~g}, 43.8 \mathrm{mmol}$) in benzene (200 mL) was stirred and heated under reflux for 48 h . The reaction mixture was concentrated to give a crude product that was recrystallized from diethyl acetate-hexane to afford pure dicarboxylate 9 ($17.8 \mathrm{~g}, 83 \%$) as a colorless solid: mp 162-163 ${ }^{\circ} \mathrm{C}$; IR (cm^{-1}) 1735, 1714, 1642, 1604; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 6.30$ (pseudo-dd, J $=4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.04 (pseudo-t, J $=3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 6 \mathrm{H}$), $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}$, $3 \mathrm{H}), 2.92$ (br s, 2H); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 165.6,146.1,130.1$, 127.6, 115.6, 76.4, 52.7, 52.3, 51.6, 51.5, 38.6; MS (12 eV) m/z (relative intensity) 453 ($\mathrm{M}^{+}-\mathrm{OMe}, 32$), 449 ($\mathrm{M}^{+}-\mathrm{Cl}, 10$), 253 (100), 207 (61), 179 (25). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{O}_{6}$: C, 47.14; H, 3.75; CI, 29.29. Found: C, 47.31; H, 3.76; CI, 29.28.
($1 \alpha, 2 \alpha, 3 \beta, 6 \beta, 7 \alpha, 8 \alpha$)-3,4,5,6-Tetrachloro-13,13-dimethoxytetracyclo [6.2.2.13,6.0,7]trideca-4,9,11-triene-9,10-dicarboxylic Acid (10). To a solution of dicarboxylate $\mathbf{9}(8.0 \mathrm{~g}, 16.5$ mmol) in ethanol (100 mL) was added dropwise an aqueous solution of $\mathrm{NaOH}(9.6 \mathrm{M}, 300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was heated under reflux for 4 h and then cooled to room temperature. Water (500 mL) was added, and the solution was washed with diethyl ether (300 mL) to remove any unchanged diester 9. The aqueous solution was acidified at $0{ }^{\circ} \mathrm{C}$ by slow addition of concentrated HCl until the precipitate was formed. The mixture was extracted with diethyl ether ($300 \mathrm{~mL} \times 3$) and the organic layers were washed with water ($300 \mathrm{~mL} \times 2$). After being dried over MgSO_{4}, the solvent was evaporated in vacuo to give a solid residue that was purified by recrystallization from acetonitrile to give diacid 10 ($6.3 \mathrm{~g}, 81 \%$) as a colorless solid: $\mathrm{mp} 217-219^{\circ} \mathrm{C}$ dec; IR (cm ${ }^{-1)}$ 2300-3500 (br), 1715, 1606, 1589; ${ }^{1} \mathrm{H}$ NMR (acetone$\mathrm{d}_{6}, 200 \mathrm{MHz}$) $\delta 6.34$ (pseudo-dd, J $=4.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (pseudo-t, J = $3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.02$ (br $\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (acetone-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta$ 166.6, 148.5, 131.0, 128.5, 116.8, 77.6, 52.9, 52.2, 52.1, 40.3; MS (12 eV) m/z
(relative intensity) 421 ($\mathrm{M}^{+}-\mathrm{Cl}, 10$), 253 (100), 207 (70), 179 (40). This material was used for the next reaction without further purification.
($1 \alpha, 2 \alpha, 3 \beta, 6 \beta, 7 \alpha, 8 \alpha$)-3,4,5,6-Tetrachloro-13,13-dimethoxytetracyclo $\left[6.2 .2 .1^{3,6}, 0^{2,7}\right]$ trideca-4,9,11-triene-9,10-dicarboxylic Anhydride (2). Method A. To a solution of dicarboxylic acid $\mathbf{1 0}(6.8 \mathrm{~g}, 14.9 \mathrm{mmol})$ in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) was rapidly added oxalyl chloride ($4.8 \mathrm{~mL}, 55.2$ mmol) under an atmosphere of nitrogen. The reaction mixture was heated under reflux until a clear solution appeared (ca. $15 \mathrm{~h})$. Removal of solvent left a gray residue that was recrystallized from benzene-hexane (1:4) to furnish maleic anhydride $\mathbf{2}(5.5 \mathrm{~g}, 84 \%)$. Method B. A solution of dicarboxylic acid $10(2.5 \mathrm{~g}, 5.4 \mathrm{mmol})$ in acetic anhydride ($8.3 \mathrm{~g}, 81.4 \mathrm{mmol}$) was heated at $60^{\circ} \mathrm{C}$ for 1.5 h . The sol ution was cool ed to room temperature, and the resulting precipitate was collected by filtration to afford anhydride $\mathbf{2}(2.0 \mathrm{~g}, 85 \%)$ as a col orless sol id. Repeated recrystallization from benzene-hexane provided an analytical sample of $\mathbf{2}$ as colorless crystals: mp $178-183{ }^{\circ} \mathrm{C}$ dec; IR (cm^{-1}) 1840, 1777, 1609; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.37$ (pseudo-dd, J $=4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.19 (pseudo-t, J $=3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}) \delta 159.8,158.4,130.0,127.8,115.9,76.0,52.8,52.1,51.7$, 34.4; MS (12 eV) m/z (relative intensity) 403 ($\mathrm{M}^{+}-\mathrm{Cl}, 15$), 253 (100), 207 (72), 179 (41). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, $46.61 ; \mathrm{H}, 2.76$; CI, 32.37. Found: C, $46.64 ; \mathrm{H}, 2.74 ; \mathrm{Cl}, 32.37$.

General Procedure for the Diels-Alder Cycloadditions of $\mathbf{2}$ with Dienes. Maleic anhydride $\mathbf{2}(1.0 \mathrm{~g}, 2.3 \mathrm{mmol})$ was allowed to react with a diene in a previously dried solvent under an atmosphere of N_{2} for a period of time. The molar equivalent of diene and solvent used and the reaction temperature and time for the specific cycloaddition are indicated in the text and in Schemes 3-8. At the conclusion of each reaction, the solvent was removed in vacuo and the resulting solid residue was immediately analyzed by thin-layer chromatographic and ${ }^{1} \mathrm{H}$ NMR spectroscopic methods to determine the composition (number of isomeric adducts and ratio). The crude product mixture was then separated and purified by chromatography (silica gel) followed by recrystallization.

Cycloaddition with Anthracene. Formation of ($1 \alpha, 2 \beta, 3 \alpha, 6 \alpha$, $7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha)-4: 5,17: 18$-Dibenzo-10,11,12,13-tet-rachloro-19,19-dimethoxyhexacyclo[6. 6.2.23,6.110,13.0 $\left.{ }^{2,7} .0^{9,14}\right]$ -nonadeca-4,11,15,17-tetraene-2,7-dicarboxylic Anhydride (11a). Colorless crystals (yield 70\%): mp 280-281 ${ }^{\circ} \mathrm{C}$ (ethyl acetate, dec); IR (cm ${ }^{-1}$) 1865, 1771, 1606; ${ }^{1} \mathrm{H}$ NMR (acetone$\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.98$ (pseudo-dd, J $=4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $4.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, 3.42-3.39 (s and m,5H), 2.78 (br s, 2H); ${ }^{13} \mathrm{C}$ NMR (acetone$\mathrm{d}_{6}, 75 \mathrm{MHz}$) $\delta 174.3,141.9,140.9,128.8,128.5,128.2,126.5$, 126.2, 121.9, 114.7, 77.7, 64.1, 53.1, 52.2, 50.7, 49.7, 37.2; MS (12 eV) m/z (relative intensity) 616 ($\mathrm{M}^{+}, 2$), $581\left(\mathrm{M}^{+}-\mathrm{Cl}, 34\right.$), 253 (86), 207 (37), 178 (100). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, $60.41 ; \mathrm{H}, 3.60 ; \mathrm{Cl}, 23.01$. Found: C, $60.44 ; \mathrm{H}, 3.64 ; \mathrm{Cl}, 22.89$.

Cycloaddition with 1,3-Diphenylisobenzofuran. Formation of ($1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha)$-17-0xa-4:5-benzo-10,11,12,13-tetrachloro-18,18-dimethoxy-3,6diphenylhexacyclo[6.6.2.13,6.110,13. $0^{2,7,} 0^{9,14}$]octadeca-4,11,15-triene-2,7-dicarboxylic Anhydride (17a). Col orless crystals (yield 95%): mp $278-279{ }^{\circ} \mathrm{C}$ (ethyl acetate, dec); IR (cm^{-1}) 1857, 1832, 1778, 1605, 1019; ${ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 300 \mathrm{MHz}$) $\delta 7.99-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 4 \mathrm{H})$, 5.67 (pseudo-dd, J $=4.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}$, 3 H), 3.28 (dd of pseudo-t, J $=4.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.76 (br s, 2 H); ${ }^{13} \mathrm{C}$ NMR (acetoned ${ }_{6}, 75 \mathrm{MHz}$) $\delta 171.7,145.7,135.1,129.9$, $129.8,129.7,128.9,126.9,126.1,121.7,114.7,92.3,77.6,72.1$, 53.2, 52.2, 49.1, 35.3; MS (12 eV) m/z (relative intensity) 673 (M+ - CI, 42), 270 (100), 253 (82), 207 (57). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{O}_{6}$: C, 62.73; $\mathrm{H}, 3.70 ; \mathrm{Cl}, 20.02$. Found: C, $62.74 ; \mathrm{H}$, 3.80; CI, 20.15.

Cycloaddition with Cyclopentadiene. Formation of ($1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha$)- and ($1 \alpha, 2 \beta, 3 \beta, 6 \beta, 7 \beta$, $8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha)$-10,11,12,13-Tetrachloro-18, 18-dimethoxyhexacyclo[6.6.2.1 $\left.{ }^{3,6} \cdot 1^{10,13} .0^{2,7} \cdot 0^{9,14}\right]$ octadeca-4,11,15-triene-2,7-dicarboxylic Anhydride (18a and 18b). Colorless crystals (total yield 93\%; 18a/18b = 1:2). 18a: mp $196^{\circ} \mathrm{C}$
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, dec); IR (cm^{-1}) 1853, 1772, 1604; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.43$ (pseudo-t, J $=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.13 (pseudo-dd, J = 4.5, $3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.54 (s, 3H), 3.47 (s, 3H), 3.44 (dd of pseudo-t, J $=4.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (pseudo-quintet, J $=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92 (d of pseudo-t, J $=10 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (br s, 2H), 1.41 (d of pseudo$\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 173.5,140.5,128.1$, $127.7,113.8,76.8,64.2,52.8,51.7,50.2,50.1,48.9,34.7$; MS (12 eV) m/z (relative intensity) 504 (${ }^{+}$, (1), 469 ($\mathrm{M}^{+}-\mathrm{Cl}$, 24), 253 (100), 207 (34), 66 (77). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, 52.41; H, 3.60; CI, 28.13. Found: C, 52.38; H, 3.60; Cl, 28.18. 18b: mp $203^{\circ} \mathrm{C}$ (ethyl acetate, dec); IR (cm^{-1}) 1855, 1770, 1605, 1338; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 5.72$ (pseudo-t, J $=1.8 \mathrm{~Hz}$, 2 H), 5.52 (pseudo-dd, J $=4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}$), 3.44 (s, 3H), 3.32 (dd of pseudo-t, J $=4.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.21 (pseudoquintet, J $=1.8 \mathrm{~Hz}, \mathrm{~m}, 2 \mathrm{H}$), 2.89 (br s, 2H), 1.56 (d, J = 10.2 $\mathrm{Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 175.7$, $136.8,128.2,126.0,113.7,76.7,62.1,52.8,51.7,51.0,49.5,48.3$, 34.6; MS (12 eV) m/z (relative intensity) 504 (M+, 10), 469 (M^{+} - CI, 24), 253 (100), 207 (17), 115 (68), 66 (45). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, 52.41; $\mathrm{H}, 3.60 ; \mathrm{Cl}, 28.13$. Found: $\mathrm{C}, 52.14$; H, 3.64; CI, 28.01.

Cycloaddition with 1,3-Cyclohexadiene. Formation of ($1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha$) and ($1 \alpha, 2 \beta, 3 \beta, 6 \beta, 7 \beta, 8 \alpha$, $9 \alpha, 10 \beta, 13 \beta, 14 \alpha)-10,11,12,13-$ Tetrachloro-19,19-dimethoxyhexacyclo[6.6.2.2 $\left.{ }^{3,6} .1^{10,13} .0^{2,7} .0^{9,14}\right]$ nonadeca-4,11,15-triene-2,7-dicarboxylic Anhydride (22a and 22b). Colorless crystals (total yield 50\%; 22a/22b=1:1). 22a: $\mathrm{mp} 227^{\circ} \mathrm{C}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dec); IR (cm^{-1}) 1859, 1772, 1605; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.35$ (pseudo-dd, J = 4.5, $3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.09 (pseudo-dd, J = $4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.53(\mathrm{~s}, 3 \mathrm{H}$), 3.46 (s, 3H), 3.18 (pseudo-t, J = $3.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.38(\mathrm{~m}$ of d, J $=9.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.13(\mathrm{~m}$ of $\mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz) δ $174.9,136.2,128.1,122.5,113.9,76.9,58.9,52.8,51.7,48.5$, 35.7, $35.5,19.9$; MS (12 eV) m/z (relative intensity) 518 (M^{+}, <1), 483 ($\mathrm{M}^{+}-\mathrm{Cl}, 15$), 253 (100), 207 (15), 80 (21). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, $53.31 ; \mathrm{H}, 3.89 ; \mathrm{Cl}, 27.37$. Found: C, 53.34 ; $\mathrm{H}, 3.97$; $\mathrm{Cl}, 27.26$. 22b: $\mathrm{mp} 230^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, dec); IR $\left(\mathrm{cm}^{-1}\right)$ 1859, 1773, 1606; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 5.88$ (pseudo-dd, J = $4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.72 (pseudo-dd, J $=4.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.54 (s, 3 H), 3.44 (s, 3H), 3.20 (pseudo-t, J $=3.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.87 (m with a br s, 4H), $1.74(\mathrm{~m}$ of d, $\mathrm{J}=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~m}$ of d, $\mathrm{J}=9.9$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 176.0,132.5,128.0,127.5,113.4$, $76.8,59.6,52.8,51.7,48.2,37.1,36.3,22.8$; MS (12 eV) m/z (relative intensity) $518\left(\mathrm{M}^{+}, 3\right), 483\left(\mathrm{M}^{+}-\mathrm{Cl}, 32\right), 253$ (100), 207 (12), 80 (20). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, 53.31; H, 3.89; CI, 27.37. Found: C, 53.63; H, 4.11; CI, 27.24.

Cycloaddition with 6,6-Dimethylfulvene. Formation of ($1 \alpha, 2 \beta, 3 \alpha, 6 \alpha, 7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha)$ - and ($1 \alpha, 2 \beta, 3 \beta, 6 \beta, 7 \beta, 8 \alpha$, $9 \alpha, 10 \beta, 13 \beta, 14 \alpha)$-10,11,12,13-Tetrachloro-18,18-dimethoxy-17-dimethylmethylidenehexacyclo[6.6.2.1 ${ }^{3,6} .1^{10,13}$.$\left.0^{2,7} .0^{9,14}\right]$ octadeca-4,11,15-triene-2,7-dicarboxylic Anhydride (23a and 23b). Method A (benzene, $40^{\circ} \mathrm{C}$, 3 days): total yield 81\%; 23a/23b = 1:8. Method B (toluene, reflux, 24 h): 45% yield of 23a only. 23a (colorless solids): mp 195$196{ }^{\circ} \mathrm{C}$ dec; IR (cm^{-1}) 1844, 1774, 1605; ${ }^{1} \mathrm{H}$ NMR (300 MHz) δ 6.44 (pseudo-t, J $=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.83 (pseudo-dd, J $=4.8,3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.41-$ 3.38 (m, 2H), 2.84 (br s, 2H), $1.42(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 173.2,147.0,138.6,128.1,124.6,113.5,112.4,76.6,63.8,52.8$, $51.7,49.5,48.6,34.7,19.6 ; \mathrm{MS}(12 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity) 544 (M ${ }^{+}, 21$), 509 (28), 253 (61), 207 (16), 106 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{O}_{5}$: C, 55.17; $\mathrm{H}, 4.07 ; \mathrm{Cl}, 26.06$. Found: C, 55.11 ; $\mathrm{H}, 4.03 ; \mathrm{Cl}, 25.92$. 23b (col orless crystals): mp 178-179 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 1847,1811,1770,1654,1604 ;{ }^{1} \mathrm{H}$ NMR (200 MHz) δ 5.83 (pseudo-t, J $=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.55 (pseudo-dd, $\mathrm{J}=4.8,3.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.70 (pseudo-t, J $=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.53 (s, 3H), 3.43 (s, 3 H), 3.34 (m, 2H), 2.86 (br s, 2H), $1.50(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 174.8,141.9,135.9,128.1,126.1,115.2,113.6,76.6$, 62.1, 52.8, 51.7, 51.2, 49.6, 34.2, 19.4; MS (12 eV) m/z (relative intensity) 544 ($\mathrm{M}^{+}, 7$), 509 (25), 253 (100), 207 (20), 106 (77). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{O}_{5}$: $\mathrm{C}, 55.17 ; \mathrm{H}, 4.07 ; \mathrm{Cl}, 26.06$. Found: C, 55.12; H, 4.11; Cl, 26.08.

Cycloaddition with o-Quinodimethane. Formation of ($1 \alpha, 2 \beta, 7 \beta, 8 \alpha, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha)$-4:5-Benzo-10,11,12,13-tetra-chloro-17,17-dimethoxypentacyclo[6.6.2.1 $\left.{ }^{10,13} .0^{2,7} .0^{9,14}\right]$ -
heptadeca-4,11,15-triene-2,7-dicarboxylic Anhydride(25a). A solution of 1,4-dihydro-2,3-benzoxathin-3-oxide in dry toluene was added dropwise in 10 min to a solution of maleic anhydride 2 in dry toluene heated at $95{ }^{\circ} \mathrm{C}$ to generate o-quinodimethane in situ. Then the general procedure was followed, and the reaction furnished, after chromatography, adduct 25a in 73% yield as a col orless solid: $\mathrm{mp} 287-288^{\circ} \mathrm{C}$; IR (cm ${ }^{-1}$) 1854, 1782, 1604; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.18-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.27$ (pseudo-dd, J $=4.4,3.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.24$ (pseudo-t,J $=2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.09(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}$, 2 H); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 174.7,133.1,128.5,128.3,128.3$, 127.9, 113.7, 76.7, 58.9, 52.9, 51.8, 47.6, 37.0, 36.9; MS (FAB) m / z (relative intensity) 543 ($\mathrm{M}^{+}+\mathrm{H}, 3$), 154 (100), 138 (99), 137 (99), 136 (99). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}_{5}: \mathrm{C}, 55.38$; H , 3.72. Found: C, 55.16; H, 3.70.

X-ray Crystallographic Study. Crystals of 2, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{5}$ ($F W=438.07$), are triclinic, space group $P-1$, with cell data: $\mathrm{a}=8.293(2) \AA, \mathrm{b}=10.018(2) \AA$, and $\mathrm{c}=11.137(2) \AA, \beta=$ $86.570(10)^{\circ}, \mathrm{V}=872.8(3) \AA^{3}, \mathrm{Z}=2, \mathrm{D}_{\text {calc }}=1.667 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=444$. A crystal of dimensions $0.68 \times 0.46 \times 0.44 \mathrm{~mm}$ was used for the data collection with an Enraf-Nonius CAD-4 diffractometer at 293(2) K and using graphite-monochromated

Mo K α radiation ($\lambda=0.71069 \AA$) from θ values of $1.86-24.97^{\circ}$. Of 3231 reflections collected, 3060 reflections had $\mathrm{I}>2 \sigma(\mathrm{I})$. The structure was solved by direct methods using NRCVAX and refined by full-matrix least-squares methods (based on F^{2}) using SHELXL-93. All non-hydrogen atoms were refined with anisotropic displacement parameters, and all hydrogen atoms were contrained to geometrically cal culated positions. The final agreement factors were $\mathrm{R}_{\mathrm{F}}=0.0299$ (0.0350 for all data), R_{w} $=0.0816$ (0.0844 for all data), and GOF $=1.021$.

Acknowledgment. Financial support was generously provided by the National Science Council of Taiwan (NSC 86-2113-M194-002 and NSC 87-2113M 194-001).

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds shown in Schemes 2-8, together with X-ray crystallographic details for $\mathbf{2}, \mathbf{1 8 b}$, and 22b. This material is available free of charge via the Internet at http://pubs.acs.org.

J O990256R

[^0]: ${ }^{\dagger}$ National Chung Cheng University.
 \# Tung Hai University.
 § Academia Sinica.
 (1) (a) Gleiter, R.; Schafer, W. Acc. Chem. Res. 1990, 23, 369-375. (b) Hunig, S.; Martin, H.-D.; Mayer, B.; Peters, K.; Prokschy, F.; Schmitt, M.; von Schnering, H. G. Chem. Ber. 1987, 120, 195-201. (c) Martin, H.-D.; Mayer, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 283314. (d) H offmann, R. Acc. Chem. Res. 1971, 4, 1-9. (e) H offmann, R.; Imamura, A.; Hehre, W. J. J. Am. Chem. Soc. 1968, 90, 1499-1509.
 (2) (a) Paddon-Row, M. N.; J ordan, K. D. In Modern Models of Bonding and Del ocalization; Libman, J. F., Greenberg, A., Eds.; VCH Publishers: New York, 1988; Chapter 3, pp 115-194. (b) Lawson, J M.; Craig, D. C.; Oliver, A. M.; Paddon-Row, M. N. Tetrahedron 1995, 51, 3841-3864. (c) Kumar K.; Tepper, R. J.; Zeng, Y.; Zimmt, M. B.; J. Org. Chem. 1995, 60, 4051-4066. (d) J ordan, K. D.; Paddon-Row, M. N. Chem. Rev. 1992, 92, 395-410. (e) Paddon-Row, M. N.; Cotsaris, E.; Patney, H. K. Tetrahedron 1986, 42, 1779-1788. (f) Paddon-Row, M. N. Acc. Chem. Res. 1982, 15, 245-251. (g) Paddon-Row, M. N.; Patney, H. K.; Brown, R. S.; Houk, K. N. J. Am. Chem. Soc. 1981, 103, 5575-5577.
 (3) Feldman, K. S.; Bobo, J. S.; Ensel, S. M.; Lee, Y. B.; Weinreb, P H. J. Org. Chem. 1990, 55, 474-481, and references therein.

[^1]: (4) (a) Tokunaga, Y.; Rebek, J., J r. J. Am. Chem. Soc. 1998, 120, 66-69. (b) Chapman, R. G.; Sherman, J. C. Tetrahedron 1997, 53, 15911-15945. (c) Meissner, R.; Garcias, X.; Mecozzi, S.; Rebek, J ., J r. J. Am. Chem. Soc. 1997, 119, 77-85. (d) Butler, D. N.; Smits, R.; Evans, D. A. C.; Weerasuria, K. D. V.; Warrener, R. N. Tetrahedron Lett. 1996, 37, 2157-2160. (e) Meissner, R. S.; Rebek, J., J r.; de Mendoza, J. Science 1995, 270, 1485-1487.
 (5) (a) Kenny, P. W.; Miller, L. L.; Rak, S. F.; J ozefiak, T. H.; Christopfel, W. C.; Kim, J.-H.; Uphaus, R. A. J. Am. Chem. Soc. 1988, 110, 4445-4446. (b) Thomas, A. D.; Miller, L. L. J . Org. Chem. 1986, 51, 4160-4169. (c) Patney, H. K. J . Org. Chem. 1988, 53, 6106-6109.
 (6) Graham, R. J .; Paquette, L. A. J. Org. Chem. 1995, 60, 57705777.
 (7) (a) Mehta, G.; Viswanath, M. B.; Kunwar, A. C. J . Org. Chem. 1994, 59, 6131-6132. (b) Warrener, R. N.; Abbenante, G.; Kennard, C. H. L. J . Am. Chem. Soc. 1994, 116, 3645-3646.
 (8) (a) Margetic, D.; J ohnston, M. R.; Tiekink, E. R. T.; Warrener, R. N. Tetrahedron Lettt. 1998, 39, 5277-5280 and earlier papers from this group. (b) Warrener, R. N.; Butler, D. N. Aldrichim. Acta 1997, 30, 119-130. (c) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 1825.
 (9) (a) Philp, D.; Stoddart, J . F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196. (b) Warrener, R. N.; Wang, S.; Russell, R. A. Tetrahedron 1997, 53, 3975-3990.
 (10) Goldstein, M. J.; H offmann, R. J. Am. Chem. Soc. 1971, 93, 6193-6204.
 (11) Chou, T.-C.; Chiou, J.-H. J. Chin. Chem. Soc. (Taipei) 1986, 33, 227-234.

[^2]: (12) (a) Lin, C.-T.; Wang, N. J.; Tseng, H. Z.; Chou, T.-C. J. Org. Chem. 1997, 62, 4857-4861. (b) Lin, C.-T.; Wang, N. J.; Yeh, Y.-L.; Chou, T.-C. Tetrahedron 1995, 51, 2907-2928. (c) Lin, C.-T.; H wang, B.-P.; Chou, T.-C. J. Chin. Chem. Soc. (Taipei) 1993, 40, 159-167. (d) Chou, T.-C.; Hong, P.-C.; Lin, C.-T. Tetrahedron Lett. 1991, 32, 63516354. (e) Lin, C.-T.; Chou, T.-C. J . Org. Chem. 1990, 55, 2252-2254. (f) Chou, T.-C.; Chuang, K.-S.; Lin, C.-T. J . Org. Chem. 1988, 53, 51685170.
 (13) Chou, T.-C.; J iang, T. S.; Hwang, J . T.; Lin, C.-T. Tetrahedron Lett. 1994, 35, 4165-4168.
 (14) Syn and anti refer to the relative side of the attachment of diene and the existing etheno bridge in $\mathbf{2}$, and endo and exo refer to the orientation of the anhydride moiety relative to the newly formed bicyclic ring nucleus in accordance with the Alder endo rule.
 (15) For a different approach to the class of Iaticyclic conjugated polyenes of generic structure C, see: (a) Grimme, W.; Gossel, J .; Lex, J. Angew. Chem., Int. Ed. Engl. 1998, 37, 473-475. (b) Grimme, W.; Reinhart, G. Angew. Chem., Int. Ed. Engl. 1983, 22, 617-618.
 (16) Exo and endo are frequently used in designating facial selectivity in norbornenyl systems. To be consistent within the present paper, we replace exo and endo with anti and syn, respectively, to denote the face with respect to the existing etheno bridge.
 (17) (a) Bartlett, P. D.; Blakeney, A. J.; Kimura, M.; Watson, W. H. J. Am. Chem. Soc. 1980, 102, 1383-1390. (b) Huisgen, R.; Ooms, P. H. J.; Mingin, M.; Allinger, N. L. J. Am. Chem. Soc. 1980, 102, 39513953. (c) McCulloch, R.; Rye, A. R.; Wage, D. Tetrahedron Lett. 1969, 5163-5166. (d) Cave, M. P.; Scheel, F. M. J. Org. Chem. 1967, 32, 1304-1307. (e) Stille, J. K.; Frey, D. A. J. Am. Chem. Soc. 1959, 81, 4273-4275. (f) Soloway, S. B. J. Âm. Chem. Soc. 1952, 74, 10271209.

[^3]: (18) Edman, J. R.; Simmons, H. E. J. Org. Chem. 1968, 33, 38083816.

[^4]: (19) (a) Williams, R. V.; Todime, M. M. R.; Enemark, P.; van der Helm, D.; Rizvi, S. K. J . Org. Chem. 1993, 58, 6740-6744. (b) Williams, R. V.; Edwards, W. D.; Gadgil, V. R.; Colvin, M. E.; Seidl, E. T.; van der Helm, D.; Hossain, M. B. J. Org. Chem. 1998, 63, 5268-5271. (c) Bertsch, A.; Grimme, W.; Reinhardt, G.; Rose, H.; Warner, P. N. J Am. Chem. Soc. 1988, 110, 5112-5117.
 (20) Pokkuluri, P. R.; Scheffer, J. R.; Trotter, J .; Yap, M. J . Org Chem. 1992, 57, 1486-1494.
 (21) Maleic anhydride 2 is rather stable. On heating 2 in toluene under reflux for 3 days, there was no detectable retro-Diels-Alder fragmentation of 2. Decomposition, however, became observable at the temperature of refluxing xylene $\left(140^{\circ} \mathrm{C}\right)$.
 (22) The electronically activated double bond in maleic ester 9 however, does not undergo Diels-Alder cycloadditions with various dienes, including 1,3-diphenylisobenzofuran and cyclopentadiene under classical or catalytic conditions.

[^5]: (23) Marchand, A. P. Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems; Verlag Chemie International: New York, 1982.
 (24) Melder, J. P.; Wahl, F.; Fritz, H.; Prinzbach, H. Chimia 1987, 41, 426-428.

[^6]: (25) In the anti-addition adduct $\mathbf{1 1 b}$, one of the benzene rings is placed above the hydrogens at the ring junction and is expected to cause a large upfield shift of their absorptions, which is inconsistent with thier occurrence at the observed δ value ($\delta 2.78$). F or example, in tetrahydrogenated 14, the two pairs of hydrogens at the ethano bridge proximal to the benzene ring experience shielding effects and, hence, display anomalous upfield chemical shifts ($\delta 0.57 / \delta 0.75$): Grimme, W.; Pohl, K.; Wortmann, J .; Frowein, D. Liebigs Ann. 1996, 1905-1916. See also: Butler, D. N.; Barrette, A.; Snow, R. A. Synth. Commun. 1975, 5, 101-106.
 (26) A shielding effect of the double bond by the proximal oxygenbridge in rigid oxa analogues of the norbornylogue skel eton has been noted. LeGoff, E.; Slee, J. D. J. Org. Chem. 1970, 35, 3897-3901.

[^7]: (27) This kind of consequence is typical for endo,endo-dimethanonaphthalene and other related homologous systems. Astin, K. B.; Mackenzie, K. J. Chem. Soc., Perkin Trans. 2 1975, 1004-1010.

[^8]: (28) Crystal data of 18b: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{O}_{5}, \mathrm{FW}=504.19$, monoclinic, $\mathrm{P} 21 / \mathrm{c} ; \mathrm{a}=14.616(3) \AA, \mathrm{b}=10.989(3) \AA, \mathrm{c}=15.194(3) \AA, \beta=$ $118.440(10)^{\circ}, V=2145.8(9) \AA^{3}, Z=4, D_{\text {calc }}=1.561 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=$ 1031.92. Of 3016 reflections measured, refined to convergence with $\mathrm{R}_{\mathrm{F}}=0.040, \mathrm{R}_{\mathrm{w}}=0.035$, and $\mathrm{GOF}=2.12$ for 1890 reflections having I > $2 \sigma(\mathrm{I})$. (The details of the X-ray analysis are provided as Supporting I nformation.)
 (29) Marchand, A. P.; Rose, J. E. J . Am. Chem. Soc. 1968, 90, 37243731 and references therein.
 (30) Haywood-F armer, J .; M alkus, H.; Battiste, M. A. J . Am. Chem. Soc. 1972, 94, 2209-2218 and references therein.
 (31) Winstein, S.; Carter, P.; Anet, F. A. L.; Bourn, A. J. R. J. Am. Chem. Soc. 1965, 87, 5247-5249.

[^9]: (32) Crystal data of 22b: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{4} \mathrm{O}_{5}, \mathrm{FW}=518.19$, monoclinic, $\mathrm{P} 2_{1} / \mathrm{n} ; \mathrm{a}=14.822(4) \AA, \mathrm{b}=11.593(2) \AA, \mathrm{c}=14.960(3) \AA, \beta=119.60(2)^{\circ}$, $V=2235.1(9) \AA^{3}, Z=4, D_{\text {calc }}=1.540 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1064$. Of 2926 reflections collected, refined to convergence with $R_{F}=0.0490, R_{w}=$ 0.1366, and GOF $=0.965$ for 2926 reflections having I $>2 \sigma(\mathrm{I})$. (The details of the X-ray analysis are provided as Supporting Information.)
 (33) The distances from the outlying $\mathrm{CCl}=\mathrm{CCl}$ and $\mathrm{CH}=\mathrm{CH}$ bonds to the central $\mathrm{CH}=\mathrm{CH}$ bond are 2.892 and $3.056 \AA$ in 18b and 2.942 and $2.957 \AA$ in 22b, respectively. We have observed that the $[2+2]$ photocyclization of $\mathbf{1 8 b}$ and $\mathbf{2 2 b}$ takes place predominately between the dichlorinated $\mathrm{C}=\mathrm{C}$ and the central $\mathrm{C}=\mathrm{C}$ bonds.
 (34) Tori, K.; Takano, Y.; Kitahonoki, K. Chem. Ber. 1964, 97, 27982815.
 (35) The tertiary hydrogens at ring junction in 22c should appear at lower field due to the effect of steric compression by the ethanobridge hydrogens, and those in 22d should appear at higher field because of the shielding effect of the proximal double bond.

[^10]: (38) Endo and exo refer to the orientation of the anhydride moiety relative to the benzene ring as depicted in Scheme 8 and by no means refer to the courses of addition as defined by the Alder rule, which is not applicable to the unsubstituted exocyclic 1,3-butadienes. No effort was undertaken to study thermal equilibrium between the conformers $\mathbf{2 5 a}$ and 25b, so as to gain information on the courses of addition, i.e., endo vs exo.

[^11]: (39) The dihedral angles (C1-C11-C12-C8, C1-C10-C9-C8, and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$) are about 0.2°.
 (40) The C10-C1-C8-C15 and C9-C8-C1-C14 dihedral angles are 124.6° and -124.2°, which are about 2° Iarger than C9-C8-C1C11 $\left(-122.5^{\circ}\right)$ and C10-C1-C8-C12 (122.3 $)$, respectively.

[^12]: (41) (a) Watson, W. H. Stereochemistry and Reactivity of Systems Containing π Electrons; Verlag Chemie International: Deerfield Beach, FL, 1983.
 (42) (a) Schleyer, P. v. R. J. Am. Chem. Soc. 1967, 89, 701-000. (b) Brown, F. K.; Houk, K. N. J. Am. Chem. Soc. 1985, 107, 1971-1978. (43) Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4054-4059.
 (44) Gleiter, R. Pure Appl. Chem. 1987, 59, 1585-1594 and references therein.
 (45) Houk, K. N.; Rondan, N. G.; Brown, F. K.; J orgensen W. L.; Madura, J. D.; Spellmeyer, D. C. J . Am. Chem. Soc. 1983, 105, 59805988 and references therein.
 (46) A systematic quantum-chemical semiempirical analysis of the Diels-Alder cycloaddition of cyclopentadiene to maleic anhydride $\mathbf{2}$ (Scheme 5) with computations using MNDO, AM 1, and PM3 methods confirms the experimental finding of syn,endo-18a and syn,exo-18b being the results of both thermodynamic and kinetic control (Kuo, L.H.; Slanina, Z.; Chou, T.-C. Z. Naturforsch. 1996, 51a, 1134-1138). However, the prevalent syn-facial selectivity under the condition of either thermodynamic or kinetic control, as evident from the outcome of the Diels-Alder cycloaddition of 6,6-dimethylfulvene to maleic anhydride 2 (Scheme 7), suggests that the facial selectivity is kinetically controlled.

